Localization in ZigBee sensors networks

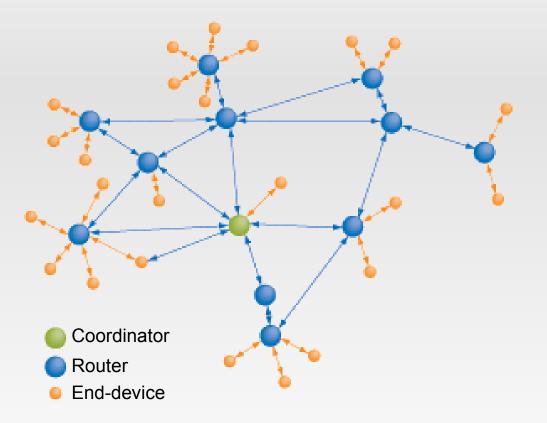
Politecnico di Torino Istituto Superiore Mario Boella

Istituto Superiore Mario Boella

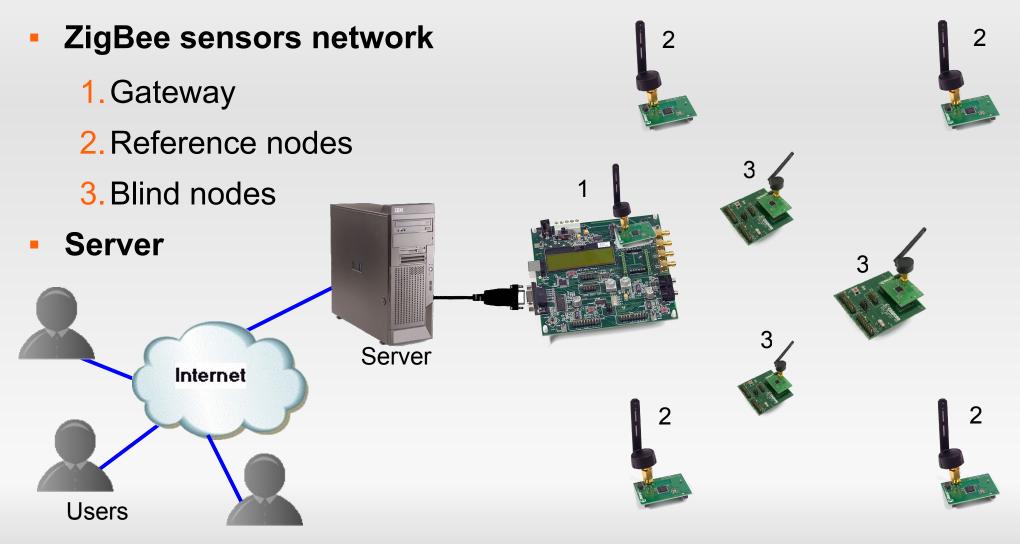
Alberto Realis-Luc

Francesco Sottile

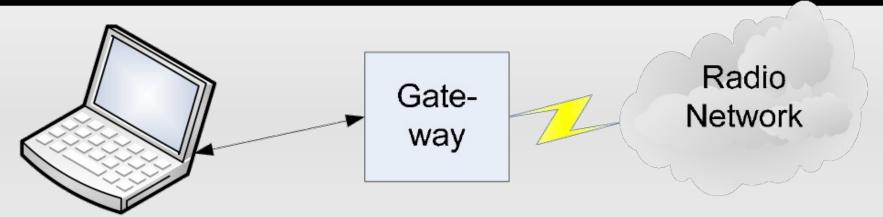
Context and possible applications


Project's targets

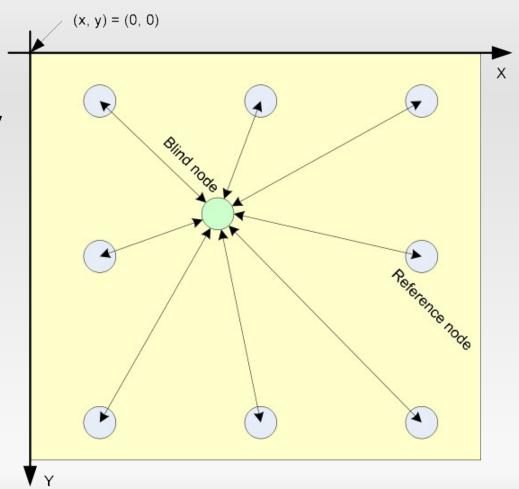
- Development of a localization prototype for ZigBee networks, based on the Received Signal Strength Indicator (RSSI)
- Verify experimentally the accuracy of the system
- Examples of possible contexts and applications
 - Hospital environment
 - Localization of items (e.g. oxygen cylinders, defibrillators)
 - Monitoring their state (e.g. Are they full or empty?)
 - Indoor environment
 - Harbour environment
 - Localization of goods on a harbour's square
 - Outdoor environment


ZigBee

Why ZigBee?


- Actually ZigBee is the leading standard for the wireless sensors networks
- Low cost of devices
- Low power consumption
- Devices can measure physical quantities using various sensors

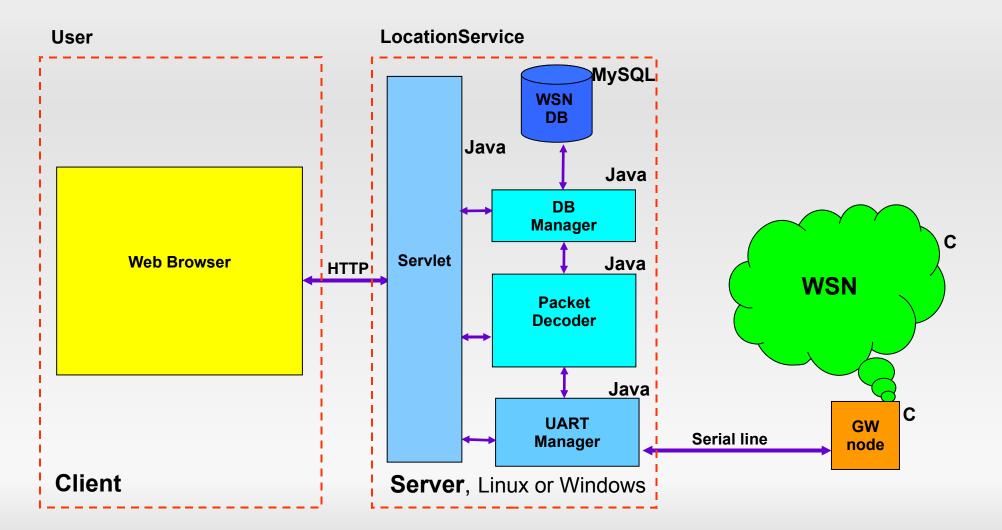
System architecture


Gateway

- It is unique in the whole sensors network
- It plays also the role of ZigBee coordinator
- It communicates with the server through a serial interface
- It needs a permanent power source
- Always active
- His job is to forward data from ZigBee network to the server and viceversa

Reference nodes

- They have static positions
- They act also as ZigBee routers
- As reference nodes are static, they can be fed by power line
- Always active
- Used by blind nodes to estimate distances
- They can monitor environmental parameters (e.g. temperature, humidity, light) related to the specific environment where they are installed



Blind nodes

- They can move freely
- Paired to the goods to monitor
- Configured as end-device
- Powered by battery
- They spend most of the time in sleep state
- They periodically collect the RSSI value measured by nearby reference nodes and send it to the gateway
- They can also monitor the status of the paired good by using the available sensors (e.g. temperature and pressure sensors applied to a gas cylinder)

Application and DB server

Web Application

🐹 💼 🚺 http://localhost:8080/LocationService/RefNodes

Soulle_ LocationService

IVI B Home Start/Stop Status Goods BlindNodes RefNodes Rooms

>>LocationService>RefNodes

"

RefNodes List

List of all RefNodes

C-

Name	IEEEaddress	NTWaddr	Location	Position	Vbatt Edit	
A8	00124b00000505be	21587	Prato	10.00 ; 17.25	2.57	Details
A6	00124b00000505bc	25907	Prato	20.00 ; 0.00	2.57	Details
A5	00124b00000505b7	20726	Prato	0.00 ; 0.00	2.58	Details
D1	00124b000001086b	25906	Garage	10.00 ; 5.75	2.57	Details
D2	00124b0000010872	20725	Ufficio	10.00 ; 1.25	2.56	Details

Operations on all reference nodes

Request diagnostic for all reference nodes Get all diagnostic

all reference nodes Dia Batte

Localization in ZigBee sens	ors networks" - Alberto Realis-Luc
-----------------------------	------------------------------------

http://localhost:8080/LocationService/BlindNode

M B Home Start/Stop Status Goods BlindNodes RefNodes Rooms

Istituto Superiore Mario Boella

>>LocationService >BlindNodes>EditBlindNode

BlindNode

Name:	M1
IEEE address:	00124b0000060769
Short address:	31073
Auto mode:	🔾 Polled - 🖲 Automatic
Localization algorithm:	Centralized - O Distribuited Update BlindNode
Timeout (sec)	3.0
Cycle time (sec)	10.0

Current Location

Room: Ufficio Position X,Y: 10.00 m ; 1.25 m Localization history

Sensors

Sensors on node: 3					
Temperature:	17.00 °C	Values History			
Battery Voltage:	2.56 V	Values History			

Diagnostic

Battery voltage:	2.56 V		
Parent RSSI:	-48 dBm		
Received last packet at:	Tue 31/Mar/2009 10:17:11.658	Request diagnostic now	

Delete node

Ensure that the node is switched off before deleting.

Delete node

The RSSI index

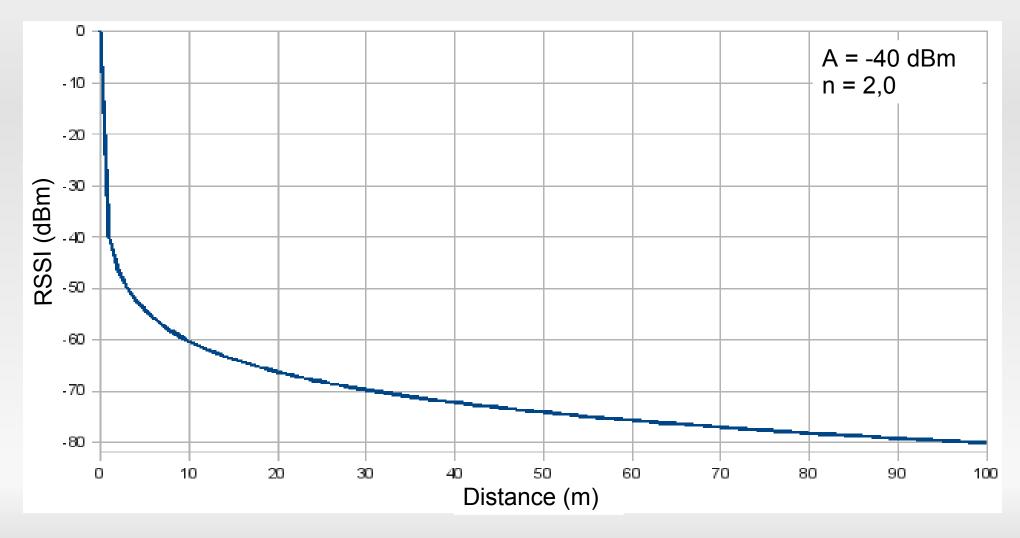
RSSI: Received Signal Strength Indicator

- It is the power of the radio signal measured by the receiving station
- ZigBee stack makes available RSSI measurement for every received packet
- With CC2430 modules it goes from -20 dBm to -90 dBm
- Strongly influenced by multipath (reflections) and interferences
- His original purpose is to determine the link quality

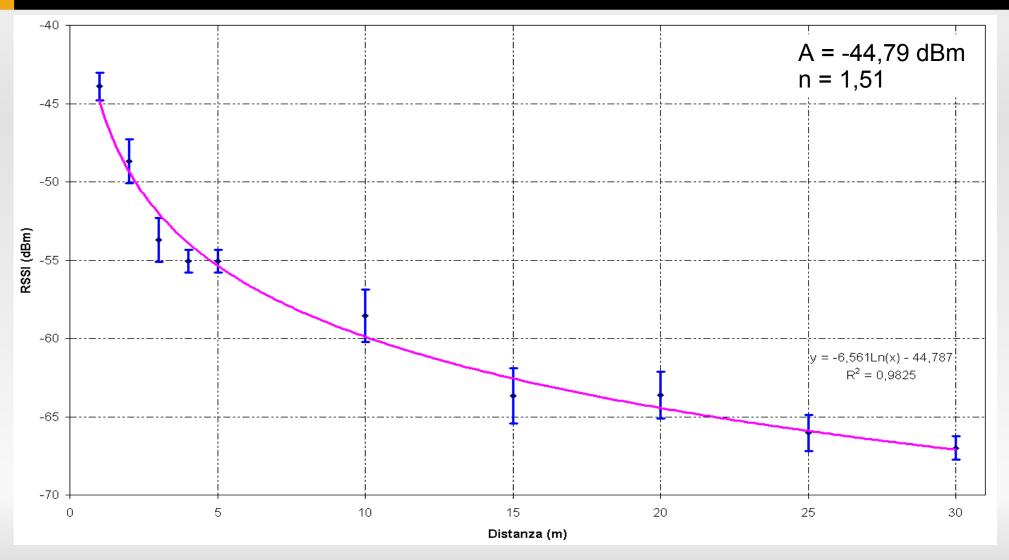
Relationship between RSSI and distance

The relationship between the power of a received radio signal and distance is expressed by *Friis* equation: $G = G = \lambda^2$

$$P_R = P_T \frac{G_T G_R \lambda}{(4\pi)^2 d^n}$$

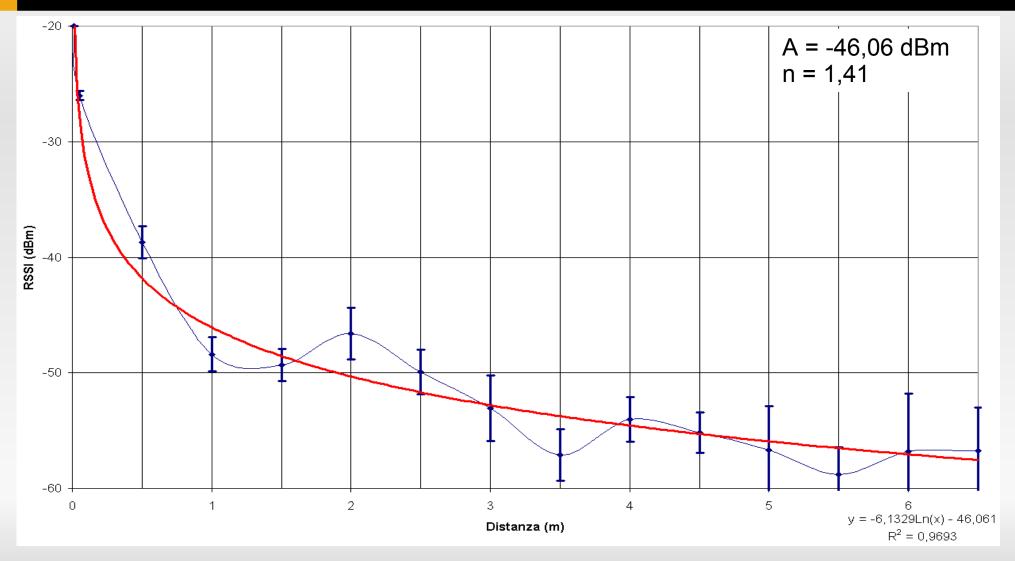

Substituting the characteristics of CC2430 (Pt = 1mW, f = 2.441 GHz) and converting it in dBm:

$$RSSI = -(10 \cdot n \cdot \log_{10}(d) - A)$$


where:

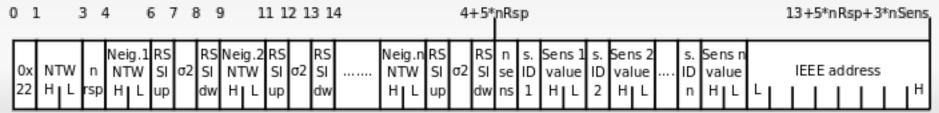
- n is a constant, called path loss exponent, it depends on the environment (in the free space it is equals to 2)
- A is the received power at one meter of distance expressed in dBm. For the CC2430 modules the value of A is about -40 dBm

The ideal case



The reality: outdoor measurements

"Localization in ZigBee sensors networks" - Alberto Realis-Luc


The reality: indoor measurements

Position algorithm steps

First step: collecting RSSI measures

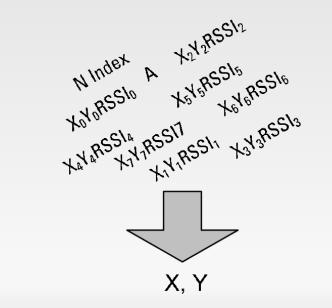
- 1. The blind node periodically broadcasts series of *blasts* messages
- 2. The neighbour reference nodes reply with the average RSSI and standard deviation related to the series of *blasts*
- The blind node collects the replies from neighbours reference nodes
- 4. The blind node sends all collected replies to the gateway, then it returns in sleep state
- 5. The gateway receives all the data and forwards it to the server trough the serial line

Position algorithm steps

Second step: selecting the best measures

- 6. The server receives a collection of RSSI from one blind node with respect to some reference nodes
- **7**. All RSSI measures with $\sigma^2 > 10$ are ignored
- 8. We assume that the blind node is located in the same room of the reference node that has measured the strongest RSSI
- 9. If in that room there are at least three reference nodes the positioning algorithm can try to estimate the blind node's coordinates. Firstly, the RSSI measures are translated in distances using the reverse of the previous formula: $\frac{A-RSSI}{10}$

$$d=10^{\frac{A-RSSI}{10\cdot n}}$$


10.All the resultant distances greater than the maximum possible for that room are ignored

Position algorithm steps

Third step: calculating the position

- 11. The coordinates are estimated in a first step with the multilateration algorithm
- 12. The previous estimated coordinates are corrected with one iteration of the indirect observations method

Multilateration

The *n* measures of distance respect to *n* reference points become a system of equations: *x* and *y* are the coordinates of reference points, and *d* are the measured distances.

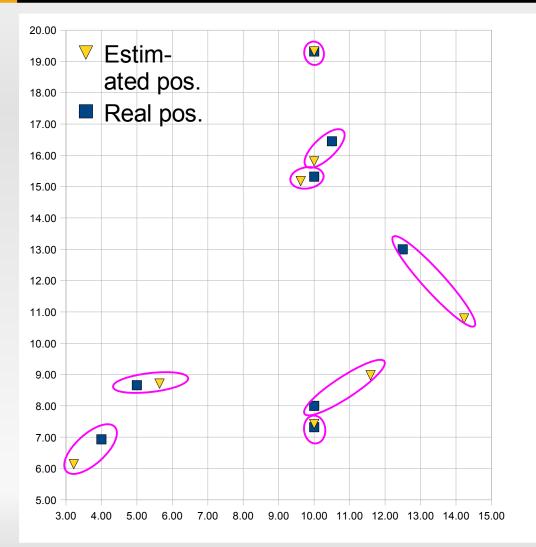
$$A = \begin{bmatrix} 2(x_1 - x_n) & 2(y_1 - y_n) \\ 2(x_2 - x_n) & 2(y_2 - y_n) \\ \vdots & \vdots \\ 2(x_{n-1} - x_n) & 2(y_{n-1} - y_n) \end{bmatrix} \qquad b = \begin{bmatrix} x_1^2 - x_n^2 + y_1^2 - y_n^2 + d_n^2 - d_1^2 \\ x_2^2 - x_n^2 + y_2^2 - y_n^2 + d_n^2 - d_2^2 \\ \vdots \\ x_{n-1}^2 - x_n^2 + y_{n-1}^2 - y_n^2 + d_n^2 - d_{n-1}^2 \end{bmatrix}$$

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = (A^T \cdot A)^{-1} \cdot A^T \cdot b \qquad residue = \frac{\sum_{i=1}^n \sqrt{(x_i - x_0)^2 + (y_i - y_0)^2} - d_i}{n}$$

 x_0 and y_0 are the coordinates of the blind node estimated using the least squares approach, the *residue* can be used to evaluate the accuracy of this result

Method of indirect observations

Here we calculate the differences to be added at the previous coordinates from the multilateration. W is the weights matrix, weights are calculated using σ values and distances.


$$A_{1} = \begin{bmatrix} 2(x_{0} - x_{1}) & 2(y_{0} - y_{1}) \\ 2(x_{0} - x_{2}) & 2(y_{0} - y_{2}) \\ \vdots & \vdots \\ 2(x_{0} - x_{n}) & 2(y_{0} - y_{n}) \end{bmatrix} \qquad l = \begin{bmatrix} (x_{1} - x_{0})^{2} + (y_{1} - y_{0})^{2} - d_{1}^{2} \\ (x_{2} - x_{0})^{2} + (y_{2} - y_{0})^{2} - d_{2}^{2} \\ \vdots \\ (x_{n} - x_{0})^{2} + (y_{n} - y_{0})^{2} - d_{n}^{2} \end{bmatrix} \qquad \sigma_{il} = -2d_{i} \cdot \sigma_{i}$$

$$W = \begin{bmatrix} \frac{1}{\sigma_{ll}^{2}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\sigma_{l2}^{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\sigma_{ln}^{2}} \end{bmatrix} \qquad \begin{bmatrix} \delta x \\ \delta y \end{bmatrix} = -(A_{1}^{T} \cdot P \cdot A_{1})^{-1} \cdot A_{1}^{T} \cdot W \cdot l$$

$$x = x_{0} + \delta x$$

$$y = y_{0} + \delta y$$

Results

Test conditions

- Open field: a meadow
- Modules at 40 cm of height from the ground
- 3 reference nodes, forming a equilateral triangle with 20 m sides
- a blind node moved in known positions

Results: details

Real position		Estimated pos.		Error	Position corrected		Error
X (m)	Y (m)	X (m)	Y (m)	est. (m)	X (m)	Y (m)	corr. (m)
10.00	8.00	11.60	7.97	1.60	11.59	8.98	1.87
10.00	15.32	10.00	15.79	0.47	10.00	15.81	0.49
10.50	16.45	7.71	14.51	3.40	9.62	15.18	1.55
12.50	13.00	7.71	14.41	4.99	14.23	10.79	2.81
10.00	7.32	10.00	6.73	0.59	10.00	7.42	0.10
5.00	8.66	-0.44	12.52	6.67	5.64	8.71	0.64
4.00	6.93	1.83	9.91	3.69	3.22	6.14	1.11
10.00	19.32	10.00	19.40	0.08	10.00	19.32	0.00

Conclusions

- Indoor environment: it is convenient to localize just by room
- Outdoor environment: it is possible localize by coordinates with an average error of about 2.5 m
- Advantages in terms of low power consumption and low cost
- No extra hardware is needed for the localization
- The system can be used to localize a car in a parking area but not to localize a book on a shelf between other books

Future developments

- Knowing the importance of environmental parameters A and n, it should be very useful to implement an automatic calibrating procedure to call every time is necessary to add a new room into the system and estimate his A and n parameters
- To improve the accuracy of distance estimation we can send the blasts at different transmission powers and calculate the RSSI with a weighted average accounting the power each blast has been sent

Localization in ZigBee sensors networks

End

Thanks for your attention

"Localization in ZigBee sensors networks" - Alberto Realis-Luc

Politecnico di Torino